Long-lived oscillations of false and true vacuum states in neutral atom systems

Schematic overview of the system and results: Fourier spectra for false and true vacua.

Abstract

Metastable false vacuum states arise in a range of quantum systems and can be observed in various dynamical scenarios, including decay, bubble nucleation, and long-lived oscillations. False vacuum phenomenology has been examined in quantum many-body systems, notably in 1D ferromagnetic Ising spin systems and superfluids. In this paper, we study long-lived oscillations of false and true vacuum states in 1D antiferromagnetic neutral atom chains with long-range Rydberg interactions. We use a staggered local detuning field to achieve confinement. Using theoretical and numerical models, we identify novel spectral signatures of quasiparticle oscillations distinct to antiferromagnetic neutral atom systems and interpret them using a classical energy model of deconfinement from Rydberg tails. Finally, we evaluate the experimental accessibility of our proposed setup on current neutral-atom platforms and discuss experimental feasibility and constraints.

Daan Camps
Daan Camps
Researcher in Advanced Technologies Group

My research interests include quantum algorithms, numerical linear algebra, tensor factorization methods and machine learning. I’m particularly interested in studying the interface between HPC and quantum computing.

Related